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a  b  s  t  r  a  c  t

Elution  peaks  were  generated  by  summing  up  a  mathematical  function  and  a  previously  recorded  exper-
imental noise.  The  first  three  statistical  moments  of  these  peaks  were  calculated  using several  data
processing  methods.  The  results  obtained  were  analyzed.  From  this  analysis,  a method  is  developed  for
the calculation  with  a  satisfying  accuracy  of  the  third  moments  of  these  combined  signals.  The method  is
applicable  to  real chromatographic  peaks  and  makes  it possible  to  determine  accurate  estimates  of  their
third moments.  This  approach  could  be helpful  for the  investigation  of the  mass  transfer  processes  in
eywords:
ccuracy
lution peaks
econd central moment
hird central moment
ignal noise

chromatographic  columns  because  the  third  moment  provides  direct  access  to  the  external  mass  transfer
coefficient.

© 2011 Elsevier B.V. All rights reserved.
. Introduction

The detailed understanding of the different steps in the mass
ransfer process in chromatographic columns is a difficult and
mportant problem that has attracted the attention of many
esearchers. The recent developments of the science and technol-
gy of chromatography [1–3] have improved our knowledge of the
hromatographic mass transfer processes regarding the extra- and
ntra-particle mass transfer steps [4–17]. However, due to the com-
lication of these processes and to the limited methods that can be
sed to directly explore them, our cognition of these processes is
till limited, particularly for some of the steps involved for which
he characteristic parameters are difficult to measure directly or
till remain unknown for the lack of suitable models. A case in point
s that of the external mass transfer coefficient which is usually
etermined according to empirical correlations [18–21].

Besides these correlations, two other methods are used to deter-
ine chromatographic mass transfer parameters. The first one
onsists in obtaining the values of these parameters through match-
ng experimental peak profiles to those predicted by a theoretical

odel [22–28].  Another, more accurate method is provided by

∗ Corresponding author. Tel.: +1 865 974 0733; fax: +1 865 974 2667.
E-mail addresses: guiochon@utk.edu, guiochon@ion.chem.utk (G. Guiochon).

021-9673/$ – see front matter ©  2011 Elsevier B.V. All rights reserved.
oi:10.1016/j.chroma.2011.12.015
moment analysis. It is currently used only to determine the first two
statistical moments, which characterize the retention time and the
width of chromatographic peaks, respectively. The third moment
characterizes peak symmetry, a property of peaks that expresses
a different result of the mass transfer processes from that charac-
terized by peak broadening. So, this moment provides a channel
through which more information on the mass transfer processes
can be obtained. Unfortunately, it remained ignored so far due to
the poor accuracy of its measurement [29].

Although some investigations of the calculation of the
statistical moments of chromatographic peaks have been published
several decades ago [30–33],  it was  shown that they were not
helpful for processing the experimental data acquired from the
chromatographic systems available at the time. This was due in
large part to the poor precision of the data produced by these instru-
ments. More importantly, no practical method was available for the
calculation of the higher statistical moments of chromatographic
peaks with a satisfying degree of accuracy. Consideration of the
third central moment was  abandoned [1,34].  Recently, however,
Gao and Lin showed that, using modern instruments, it was now
possible to measure with a reasonable accuracy the third central

moments of a band in a wide range of mobile phase flow rates and
to derive from these measurements a reliable estimate of the exter-
nal mass transfer coefficient [35–37].  However, only a limited range
of experimental conditions was involved in that work. Therefore,
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he requirements that must be followed to ensure the validity of
his approach to measure the third moment should be established
nder a wider range of experimental conditions.

To validate the process of experimental measurements of third
entral moments, we developed a method for the calculation of
ealistically simulated data. Peak profiles are generated by com-
ining a mathematical function and a segment of experimental
aseline, previously recorded. This combination is processed as are
eal chromatographic peaks. Various methods of data acquisition
nd processing were adopted to calculate the third moments of
hese simulated signals. The performance of these methods can
e estimated from the difference between the values of the third
oments calculated with them and those provided by direct inte-

ration of the mathematical function. This is why we  developed
he method reported below, which permits an accurate calculation
f the third moment of peak profiles, and its application to real
hromatographic peaks.

. Theory

.1. Definition of the statistical moments of peak profiles

By definition, the nth central moment of an eluted band profile,
n, are given by the following equations [1]:

n =
∫ ∞

0
C(t)(t − �1)n dt∫ ∞

0
C(t) dt

(1)

1 =
∫ ∞

0
C(t)t dt∫ ∞

0
C(t) dt

(2)

here �1 is both the first moment of the peak and the average
lution time of the band of solute, C(t) is the concentration profile
f the solute detected at the end of the column. The integrals in the
enominators of these fractions (

∫ ∞
0

C(t) dt) or zero-order moment
s the area of the peak; it is proportional to the amount of the sample
njected in the column.

.2. Fundamental importance of the third moment of
hromatographic peaks

The set of mass balance equations of the general rate model
f chromatography has no closed form algebraic solution, which
akes difficult the interpretation of experimental results regarding

he relationship between band broadening and column charac-
eristics [1]. However, this equation can be solved in the Laplace
omain, where the moments of the solution can be derived [38,39].

t is possible to transform these moments from the Laplace to the
eal domain. Algebraic relationships are thus provided between the
oefficients of the general rate model and the different moments of
he eluted band.

The equations of the general rate model are available in the lit-
rature(see [1] Chapter 6, Eqs. (6.58)–(6.64)). When the kinetics
f adsorption–desorption on the stationary phase can be consid-
red as fast enough for its contribution to band broadening to
e neglected compared to the other contributions, the first three
oments become:

• For the first moment:

�1 = tR = L
(1 + k) + tp (3)
u 2

where tR is the retention time of the band, k the retention factor
of the compound considered (k = F(�p + (1 − �p)Ka), F is the phase
ratio, with F = (1 − �e)/�e, where �p and �e are the internal and
 A 1222 (2012) 81– 89

external porosities of the column bed, respectively, Ka the adsorp-
tion equilibrium constant), L the column length, u the average
interstitial velocity, and tp the duration of injection of the sample.
• For the second moment:

�2 = 2
L

u

[
DL

u2
(1 + k)2 + k2

F

(
d2

p

60 Dp
+ dp

6kf

)]
+ t2

p

12
(4)

where DL is the axial dispersion coefficient, combination of the
dispersive effects of axial and eddy diffusion, Dp is the diffusion
coefficient of the solute through the particles, dp the average par-
ticle size, and kf the external mass transfer coefficient.
• For the third moment:

�3 = L
12�eDL [�e + (1 − �e)J] (1 − �e)

u3�3
e

(
dpJ2

6kf
+ dp

2J2

60Dp

)

+ L
1 − �e

u�e

(
dp

4

420Dp
2

+ dp
3

30kf Dp
+ dp

2

6kf
2

)
J3

+L
12�2

e DL
2

u5�5
e

[�e + (1 − �e)J]3 (5)

with:

J = �p + (1 − �p)Ka (6)

2.3. Calculation of the statistical moments from experimental
chromatograms

Two main points must be carefully considered to perform accu-
rate calculations of these statistical moments from the recorded
chromatograms, the selection of the boundaries of the numerical
integrals, which cannot extend to infinity in practice, and the sta-
bility of the baseline, which may  drift during the recording of the
peaks.

2.4. On the determination of the integral interval

According to the definitions provided above, exact values of the
statistical moments should be obtained through integration of the
elution band profiles from zero (the injection time) to an infinite
time, which is practically impossible. In practice, all these integra-
tions can be accomplished only within a finite integral interval.
The determination of the most suitable integral intervals, espe-
cially that of the upper limit of integration for experimental peaks,
which are always affected by a certain degree of tailing, becomes a
problem [40].

Normally, the integrations for the moment calculations
of mathematical functions are started and stopped at the
points where the function is tangent to the baseline. But
for experimental peaks that are always somewhat noisy, and
especially for tailing peaks, the integral interval decided in
this way  may  not be wide enough to provide an accurate
value of the moments. This can be explained by Fig. 1 where
three curves are shown. They represent a tailing peak profile
generated by an exponential modified Gaussian (EMG) function and
the integrands in Eqs. (1) and (2) which are integrated in the cal-
culation of the second and the third central moments of the EMG
function, respectively. The figure shows that the integration area
under the curve C(t) within the finite integral interval ending in
the point indicated by the arrow 1 in the figure represents a good
approximation of the zeroth moment. But, for the calculation of
the second moment, the upper limit for the integration under the

curve C(t) (t − �1)2 should not be less than the value indicated by
the arrow 2 while for the integration of C(t) (t − �1)3, which gives
the third moment, it should not be less than the time when the
point indicated by the arrow 3, which includes the whole integral
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Fig. 1. Schematic of the determination of the integral interval for the integration
of  the second and third central moments of tailing peak profiles. The peak profile
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Fig. 2. Effect of the baseline noise on the integrands for calculations of the first three
moments. The curves were generated from the same EMG function as those shown
s  generated by the exponentially modified Gaussian (EMG) function, where � = 0.2,
g = 5.0 s, � = 0.7, and A = 0.54.

rea, is reached. Therefore, Fig. 1 shows that the integral intervals
or the calculation of the moments of a tailing peak, and especially
hese intervals for higher moments, should be wide enough. Con-
idering the curves of the integrands for the moment calculations,
.e. for C(t) (t − �1)2 and C(t) (t − �1)3 shown in Fig. 1, it would be

ost helpful to find an accurate procedure for the determination
f the integral intervals.

It is important to note that, due to the formulas in Eqs. (1) and (2),
he density plots of the contributions of the peak profile to its higher

oments have two separate lobes with a null point between them.
he practical consequence is that the central part of the elution
rofile, where the signal and the signal to noise ratio for experi-
ental peaks are highest, contribute relatively little to the central
oments while the wings of the profile have large contributions,
hich extend farther than the contributions of these wings to the

eroth and the first moments. This has considerable consequences
or the handling of experimental results.

On the other hand, it is not true that the wider the integral inter-
al, the more accurate the moments obtained. This is because any
eal chromatographic peak profile acquired through experiments
s affected by a degree of baseline noise that cannot be avoided.
ig. 2 shows the effect of this noise on the integrands for the cal-
ulation of the first three moments of the peak profile. It is obvious
hat the baseline of the curve t C(t) is clear and flat, which indi-
ates that the noise has only a small effect on the result of the first
oment integration. However, the effect of the noise for the curve

(t) (t − �1)2 can be seen near the ends of this curve, particularly on
ts tailing end. As for the curve C(t) (t − �1)3, the effect of the noise
ecomes important, even at locations that are not far remote from
he center of the second lobe of this curve. Therefore, in order to
educe the influence of the baseline noise on the calculation results
f higher moments, the integral interval for the integrand should
ot be excessively wide.

Here comes the conflict that we need to solve. The integral inter-
al for moment calculation should be wide enough to reduce the
alculation error due to the loss of integration area, but it also
hould be sufficiently narrow to reduce or limit the contribution
f the noise and the baseline drift. This conflict is most important
or the calculation of the higher moment of tailing peaks. In part,

he solution to this problem is in increasing the ratio of the signal
o the noise of the peak profile while, at the same time, keeping the
ntegral interval sufficiently wide to limit the truncation error.
in Fig. 1 but a segment of noise was  added (see details in Section 3). (a) Curve of
integrand for calculating the first moment; (b) curve of integrand for calculating the
second moment; and (c) curve of integrand for calculating the third moment.

Finally, besides reducing the signal noise, scientists should make
sure that the signal is stable and that the baseline drift is limited.
This renders important the methods for correcting the baseline
drift. Different baseline levels will result in different integration
area under the curve of the integrand and consequently will lead to
different values of the moments. This specific problem is discussed
in more detail in Section 4.

3. Calculations and experiments
The aim of this work is to estimate the accuracy with which the
third moments can be calculated. For this purpose, we  designed
synthetic signals that combine peaks derived from mathematical
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Table  1
Parameters used to generate EMG  peaks and determine the integral intervals.
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Slight tailing peak 0.257 5.0 0.2 0.1 0.40 12
Strong tailing peak 0.540 5.0 0.2 0.7 0.15 42

unctions and segments of noisy baseline recorded in conven-
ional experiments. The moments of the mathematical functions
re exactly known. The segments of baselines should not contribute
o the moments but their noise and baseline drifts are realistic. The
urpose of the exercise is to find a procedure to minimize their
ontributions to the calculated moments.

First, mathematical functions are selected to represent the chro-
atographic peak profile. Their statistical moments are accurately

nown; later in this work, these moment results are called the
real” moments of the (theoretical) profiles. Second, a segment
f recorded baseline is added to the peak profiles produced by
he mathematic function to simulate an experimental peak profile.
hen, the statistical moments of the synthetic peaks are calculated;
hey are called the “simulated” moments. Finally, the accuracy
f these simulated moments are calculated from the relative dif-
erences between them and the real moments. The precision is
btained from the relative standard deviations of a number of such
alculations performed with the same mathematical function and
ifferent segments of the same, long baseline record.

.1. Mathematical functions used to model peaks

The exponential modified Gaussian function was adopted in this
ork because it is the mathematical function most commonly used

o represent chromatographic peaks [41,42]. It simulates rather
ell the influence of the sampling system, composed of empty

ubes and small open vessels [1].  This function is written as follows:

(t) = A

2 �
e

�2

2  �2 + tg −t
�

[
erf

(
t − tg

�
√

2
− �

�
√

2

)
+ 1

]
(7)

here A is the peak area, tg is the retention time of the Gaussian
omponent of the profile, � its standard deviation and � is the time
onstant of the exponential decay component of the real profile.

Two profiles with different extent of tailing but having the same
eight were used in this work. The values of the parameters used

n the EMG  function to generate these two profiles are listed in
able 1. The asymmetry factors at 10% peak height peaks are 1.09
nd 3.08 which represents chromatographic peaks having a slight
nd a very strong degree of tailing, respectively.

.2. Baseline and noise data acquisition

A very long section of baseline was recorded for 10 h using the
V-diode-array detector of a Waters Acquity UPLC System fitted
ith a Waters BEH C18 column (3.0 mm × 150 mm,  average par-

icle size 1.7 �m)  flushed with the mobile phase at a flow rate of
.8 mL/min. This mobile phase was composed of acetonitrile (HPLC
rade, Fisher Scientific, Fair Lawn, NJ, USA) and water (HPLC Grade,
isher Scientific) in the volume ratio of 1:1. The inlet pressure of the
nstrument was slowly shifting between 866 and 875 bars while
he temperature kept nearly constant close to 28 ◦C (27.992 ◦C to
8.007 ◦C) in these 10 h. The wavelength of the UV detector was set
t 254 nm and the sampling rate was 40 points/s. The high flow rate
nd high inlet pressure adopted for the recording of the baseline
ignal were chosen to have a relatively high level of noise. There-

ore, the baseline noise and drift were maximized. The recorded
aseline noise is shown as Fig. 3.

The whole 10 h-baseline record was separated into ten sections
asting 15 min  each. The locations of these sections are shown in
Fig. 3. Baseline recorded for 10 h. Details on the experimental conditions for this
acquisition are provided in Section 3.2.

Table 2. Each section of noise was  added to the peak profile gener-
ated by the EMG  function, generating ten different synthetic peaks
which simulate as many different experimental chromatograms.

The higher level of the signal to noise (S/N) ratios for these syn-
thetic peaks considered in this work are provided in Table 2. The
accurate measurement of the third central moment for practical
chromatographic peaks is difficult, even for those having a high S/N
ratio. The S/N ratios listed in Table 2 are defined as the peak height
divided by the range of the noise (taken as four times the standard
deviation of the noise [43] when the noise is measured for the base-
line section considered, after its drift has been corrected). Because
the heights of the two peak profiles are similar, with 0.46752 for the
slightly tailing peak and 0.46825 for the strongly tailing one, simi-
lar S/N ratios are obtained after the same noise section is added to
the theoretical functions.

3.3. Procedure for calculating the moments of synthetic peaks

Special methods were adopted for determining the integral
intervals and different baseline processing methods are used in this
work.

3.3.1. Determination of the integral intervals
The dilemma found when attempting to determine the integral

interval, more specially the upper limit of the integration for calcu-
lating the higher moments was  already stated in Section 2.4.  This
can be simply stated by writing that, in order to obtain reliable
numerical values of the moments, we  should choose an integral
interval that is wide enough to provide a small calculation error due
to the loss of integration area but which is, in the time, sufficiently
narrow to limit the contribution of the noise and the baseline drift.

Therefore, the plot of C(t)(t − �1)2 ∼ t is a useful tool to deter-
mine the upper limit of the integrations for calculating the second
and third moments. The integrations should end just before the
moment when the whole area under the curve of C(t)(t − �1)2 ∼ t
is involved, just as the position indicated by the second arrow in
Fig. 1. Obviously, this rule cannot provide an exact value of the
upper integration limit. This time fluctuates within a brief period,
according to the subjective judgement of the operator. But it might
result in only a small calculation error on the moments because the
area that contributes mostly to the integrals was already included

and it is much larger than the area variation due to a shift of the
upper limit of integration.

This is clearly explained by the following moment calculation
results. Let consider the situation shown in Fig. 2b. According to the
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Table  2
Location of each section in the 10-h noise record and signal to noise ratios of synthetic peaks.

Number of noise section Location of noise section (min) Range of noise (AU) S/N ratio (for slight tailing peaks) S/N ratio (for strong tailing peaks)

1 0–15 4.54426E−4 2933 2937
2 60–75 3.03268E−4 3036 3041
3 120–135 2.82287E−4 3460 3465
4  180–195 3.04938E−4 2565 2569
5 240–255 3.10897E−4 2582 2586
6  300–315 3.32832E−4 2587 2591
7  360–375 3.33294E−4 2443 2447
8  420–435 2.78711E−4 2884 2889
9 480–495 2.75135E−4 2755 2760

10  540–555 3.23057E−4 2517 2521
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1

revious analysis, the integrations to calculate the second and third
oments can end later than but near the position indicated by the

rst arrow in 2b. To make clear the effect of a small shift of the upper
imit of integration of the moments, the first three moments were
e-calculated by ending their integrations at the positions indicated
y arrows 1–5, respectively. During this calculation process, we
sed the third method for baseline correction which is discussed

ater in Section 4. The results are provided in Table 3. The relative
ecreases of these moments (second row in Table 3) are always

ess than 0.02, 2 and 10%, respectively. The moments calculated
ith different upper limits of integrations do not differ significantly

rom each other and all are within the range of acceptance. Similar
rrows are marked in Fig. 2c, showing that the contribution of noise
o the third moment increases when the integration ends later. So,
lthough the upper limit of the integration may shift slightly, this
hift is limited and causes only a small calculation error for the third
oment.
In the following section, the effect of different methods of pro-

essing the baseline on the moments is discussed. The integral
ntervals for the moment calculations were determined after to
he integrand plots of the EMG  functions, before addition of the
aseline segments, to avoid any effect of the noise. This means
hat the EMG  functional peak itself and not the synthetic peak was
onsidered for the determination of the integration interval. This
ermits a separation of the effects of the different baseline pro-
essing methods and those of peak integration, so the discussion
ssumes that the integral intervals for moment calculations were
lready determined properly.

For each group of moment calculations, for the ten synthetic
eaks produced by adding ten sections of experimental noise to an
MG  function peak, the same integral interval was  used. The lower
nd the upper limits of integration are tg − nw� and tg + n(1 − w)�,
espectively, where n is an empirical coefficient [40] and w is a coef-
cient that corrects for peak asymmetry and for the shift between
he peak apex and the center of the elution peak (w would be equal

o 0.5 for a symmetrical peak). Different combinations of n and w
ere tried and a set of values was adopted so that the curve of

he integrand (see Fig. 1) is placed near the center of the integral
nterval and the front and the rear wings of this curve are close to

able 3
elative difference of the fist three moments from their real values for the peak (shown in
–5,  respectively.

Relative difference of the fist three moments from their real values (

Integration ended in
position of arrow 1

Integration ended in
position of arrow 2

Inte
pos

�1 (min) −0.0235 −0.0158 −0.0
�2 (min2) −1.41 −0.960 −0.6
�3 (min3) −6.08 −3.98 −2.0
the baseline. The values of the first moment used for calculating
the curve C(t)(t − �1)2 ∼ t to determine the integral limits are the
real first moments of the EMG  functions. The values of the param-
eters w and n determined in this fashion are given in Table 1. The
integral intervals for the slightly and the strongly tailing peaks are
(4.04–6.44 min) and (3.74–12.14 min), respectively.

Although we are mostly concerned in this work with improving
the calculating accuracy of the third moment, the integral interval
for the moment calculation was determined mainly according to
the integrand of the second moment. This is because the S/N ratio
of the integrand of the second moment is higher than that of the
third moment, which can be understood by comparing the plots in
Fig. 2b and c. This approach is validated by the satisfactory results
of the calculations of the third moments which are obtained in this
way, as discussed later.

3.3.2. Baseline processing methods
In this work, we used the three following methods to handle the

correction for the baseline drift in the calculations of the central
moments of the synthetic peaks:

Method 1: There is no baseline correction in this method. After the
integral intervals have been determined as described above, the
moments are calculated directly according to Eqs. (1) and (2).
Method 2: There is a baseline correction in this method. The
starting point of the integration is taken as the referential point,
and the value of its y-coordinate is subtracted from the sig-
nal values of all the data points involved in the integration
interval.
Method 3: This method also includes a baseline correction. Since
the baseline segment used for the synthetic peak is known, it can
be used to derive the baseline drift correction. First, two  sections of
this segment, those containing the initial and the final parts of the
chromatograms and, hence, are outside of these integration limits,

were fitted each one to a straight line, which was  then subtracted
from the part of the synthetic peak within the integral interval. This
method eliminates the effect of the baseline shift on the results of
the moment calculations.

 Fig. 2(a)) calculated with different upper limits of integration indicated by arrows

%)

gration ended in
ition of arrow 3

Integration ended in
position of arrow 4

Integration ended in
position of arrow 5

107 −0.00316 0.00246
00 0.111 0.502
7 2.08 4.50



86 H. Gao et al. / J. Chromatogr.

Table  4
Calculated first three moments for peak profiles generated by EMG  functions.
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Slight tailing peak 5.1 0.05 0.002
Strong tailing peak 5.7 0.53 0.686

. Results and discussion

.1. Values of moments calculated for the peak profiles generated
y the EMG  functions

The first three moments for the slightly and the strongly tailing
eaks generated by the EMG  functions were calculated according
o the following equations [44]:

1 = tg + � (8)

2 = �2 + �2 (9)

3 = 2�3 (10)

he results are shown in Table 4 and illustrated by the heights of
he white columns in Fig. 4.

.2. Values of moments calculated without baseline correction in
ethod 1

The values calculated for the first three moments without base-
ine corrections (Method 1 of the baseline process) for the slightly
nd the strongly tailing synthetic peaks are shown in the first
olumns in Tables 5 and 6. They are also indicated visually by the
eep grey columns in Fig. 4, left and right, respectively.

Obviously, the results obtained for the first moment are most
ccurate and precise. Although the results are slightly worse for
he strongly than for the slightly tailing peaks, they are still quite
atisfactory in this last case. This means that the baseline noise
as little or nearly no influence on the result of calculations of the
rst moment when the (S/N) ratio satisfies the condition given in
able 2.

As for the second moment, the results of the calculations for
he slightly tailing synthetic peaks are still fine but, in contrast,
he results of these calculations for the strongly tailing peaks are

uch worse. The difference between the values of the real second
oment of these peaks as generated by the EMG  function and those

f the simulated peaks is nearly 50%. Without baseline correction,
he second moment of the strongly tailing peaks can certainly not
e calculated accurately.

Finally, the values obtained for the third central moment with-
ut baseline correction are well beyond acceptance.

The values of the moments calculated above without any base-
ine correction are reported here to show the noticeable differences

ith their actual values, especially for the third moments. This illus-
rates the need for a baseline correction. Although the signal to
oise ratios of the profiles discussed in this work are high, an accu-
ate value of the moment cannot be obtained without including a
aseline correction during the calculations. With the baseline cor-
ection methods used here, the accuracy of the moments is much
mproved when even a very simple processing method is adopted,
s shown in the following discussions.

.3. Values of moments calculated with the baseline correction in
ethod 2
The second method for baseline processing used in this work
s only an expedient because it only corrects the position of the
aseline level roughly. Yet, its effect is impressive, as illustrated in
he second columns of Tables 5 and 6 and in Fig. 4 left and right.
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Compared with the results obtained without baseline correc-
tion, the relative standard deviation (RSD) of the second moments
of the synthetic peaks after baseline correction decreases nearly ten
times for either slight or strong tailing peaks (see Tables 5 and 6).
The lower relative differences (RD) between the second moments
of the peak generated by the EMG  function and the average of
those calculated for the synthetic peaks also indicate the marked
improvement of the calculation accuracy of the second moments
of synthetic peaks obtained with this method.

Most importantly, reasonable result can now be obtained for the
third moments. For the slightly tailing synthetic peaks, the RSD and
the RD between the third moments average and the third moment
of the EMG  function are all lower than 10%, which is a considerable
improvement. As for the strongly tailing synthetic peaks, due to the
increase extent of their tailing, their calculated third moments are
seriously scattered but the RD between their average and the “real”
third moment of the EMG  function is still less than 10%.

4.4. Values of moments calculated with the baseline correction in
Method 3

The third method for processing the baseline of synthetic peaks
is classical. The baseline level as well as the baseline shift (slope) is
corrected with the method used. However, the drift is assumed to
be linear, which remains approximate.

The first three moments calculated for the synthetic peaks with
this method are given in the third columns of Tables 5 and 6 for
the slightly and the strongly tailing peaks, respectively. As for the
slightly tailing peaks, there is only a slight improvement of the
results when Method 3 is used instead of Method 2, because the
results provided by Method 2 were already satisfying.

For the strongly tailing peaks, in contrast, the results are
markedly improved. The RSD of the second and third moments and
also the Relative Difference between the averages of the higher cen-
tral moments and those of the EMG  function are almost ten times
less than the corresponding results obtained with Method 2.

4.5. Development of a practical method for baseline correction

According to the analysis of the moment results obtained with
the various baseline processing methods, it is clearly necessary to
find a proper baseline correction method for accurately calculat-
ing the higher moments. Method 3 seems to be optimum, which is
easily understood because with this method the effect of an uncor-
rected baseline drift can be removed almost totally. The integral
intervals are properly determined, which decreases the influence of
the noise. Then, satisfactory results can be calculated for the differ-
ent central moments of the synthetic peaks because the two main
sources of errors in the calculation of these moments are reduced
as much as possible.

A proper baseline correction method applicable to actual exper-
imental chromatographic peaks must now be developed, based
on the results of this analysis. Although Method 3 is sufficiently
efficient for synthetic peaks, it cannot be applied directly to real
experimental peaks because the baseline noise cannot be extracted
from a real chromatogram and no linear fitting result can be
obtained. But consideration of this method is a useful reference
basis for developing the new method needed.

The baseline correction should adjust for the baseline level and
for its slope. The following method was developed to accomplish
this goal. First, two sections of the recorded peak profile are selected
for the baseline correction. These sections should not be too narrow

nor too wide, nor too far remote from the peak center, otherwise
a satisfactory baseline correction cannot be obtained for the peak
considered. We  selected two sections in the following way: the dis-
tance between the initial point of the first baseline section selected
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ig. 4. (Left) Graphs comparing the moments of the weakly tailing synthetic peak 

or  the second moment; and (c) for the third moment. (Right) Same for the strongly

nd the lower limit of integration for the moment calculation is
qual to the distance between the upper limit of integration and
he end point of the second baseline section and the lengths of
hese two sections is equal to half the width of the integration
nterval. Then the data points recorded in these two sections are
eparately fitted to a straight line. The straight line joining the mid-
le of these last two lines provides the baseline correction, which

s finally subtracted from the peak profile.
To verify the validity of this method of baseline correction, the

ame method as just described was applied to the simulated peaks,
.e. to the baseline segment and the EMG  function added to it and

he simulated moments wer calculated.

Before these calculations, the proper integral interval is deter-
ined according to the method described in Section 3.3.1.
owever, this time, the synthetic peak, not the EMG  function, was
btained using different baseline processing methods. (a) For the first moment; (b)
g peak.

the integrand for the second moment calculations (as shown in
Fig. 2b). The integration interval was determined to ensure that
the complete profile to be integrated was included within the inte-
gral interval while as much as possible of the noise part that might
strongly influence the result was  excluded. The value of the first
moment used for determining the integral interval was calculated
according to Eq. (2).  The upper and lower limits of integration
are determined easily as long as the complete area of the peak is
involved, because, as shown above, it is easy to obtain accurate
estimates of the first moment.

The results are shown in Table 7. They are satisfactory. They are

also illustrated in Fig. 4 to compare them with the values of the
moments obtained with the other baseline processing methods. It
is clear that the accuracy of the moment calculations obtained with
the developed method is similar to that achieved with Method 3.
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Table  5
Moments’ result for synthetic peaks of slight tailing with their baseline processed in first three methods.

Method 1 Method 2 Method 3

�1 (min) �2 (min2) �3 (min3) �1 (min) �2 (min2) �3 (min3) �1 (min) �2 (min2) �3 (min3)

1 a 5.100 0.04967 0.001722 5.100 0.04960 0.001673 5.100 0.04995 0.001872
2 a 5.099 0.04735 8.086E−4 5.100 0.04974 0.001808 5.100 0.05003 0.001897
3 a 5.099 0.04628 4.947E−4 5.100 0.04996 0.001884 5.100 0.05003 0.002019
4 a 5.099 0.04532 1.228E−4 5.100 0.04989 0.001949 5.100 0.04992 0.001986
5 a 5.099 0.04510 −9.981E−5 5.100 0.04981 0.001841 5.100 0.04992 0.001859
6 a 5.100 0.04992 0.001905 5.100 0.04992 0.001905 5.100 0.04995 0.001924
7 a 5.098 0.04517 −1.084E−5 5.100 0.04978 0.001862 5.100 0.04981 0.001882
8 a 5.099 0.04553 2.320E−4 5.100 0.05013 0.002089 5.100 0.04999 0.002030
9 a 5.099 0.04564 1.626E−4 5.100 0.04999 0.001939 5.100 0.04996 0.001936
10 a 5.099 0.04570 1.023E−4 5.100 0.04970 0.001733 5.100 0.04984 0.001786
�i

b 5.099 0.04657 5.440E−4 5.100 0.04985 0.001868 5.100 0.04994 0.001919
RSD  (%) c 0.01060 3.910 132.0 0.003400 0.3110 6.240 0.002370 0.1410 3.980
(�i− �i,real)/�i,real × 100 % d −0.0229 −6.860 −72.80 −0.002350 −0.3000 −6.500 −0.001960 −0.1200 −4.000

a Number of noise section being added to generate synthetic peak.
b Average value of moment. �i(i = 1, 3) represents the first, second and third moment, respectively.
c Relative standard deviation of moments for synthetic peaks.
d Relative difference between the calculated moments of peaks generated by EMG  functions (�i,real)and those of synthetic peaks.

Table 6
Moments’ result for synthetic peaks of strong tailing with their baseline processed in first three methods.

Method 1 Method 2 Method 3

�1 (min) �2 (min2) �3 (min3) �1 (min) �2 (min2) �3 (min3) �1 (min) �2 (min2) �3 (min3)

1 5.691 0.4796 0.3926 5.691 0.4810 0.4004 5.700 0.5293 0.6813
2  5.666 0.3526 −0.3108 5.692 0.4894 0.4582 5.700 0.5296 0.6811
3  5.652 0.2754 −0.7554 5.696 0.5086 0.5607 5.700 0.5295 0.6796
4 5.642  0.2231 −1.052 5.701 0.5340 0.7047 5.699 0.5252 0.6554
5  5.639 0.2125 −1.103 5.701 0.5377 0.7351 5.700 0.5284 0.6838
6 5.639  0.2108 −1.123 5.700 0.5306 0.6859 5.701 0.5331 0.7005
7  5.642 0.2278 −1.024 5.701 0.5331 0.7009 5.700 0.5307 0.6869
8  5.645 0.2432 −0.9328 5.702 0.5394 0.7389 5.700 0.5307 0.6884
9  5.645 0.2422 −0.9412 5.699 0.5249 0.6551 5.700 0.5275 0.6698
10  5.649 0.2610 −0.8304 5.699 0.5249 0.6582 5.699 0.5271 0.6681
�i 5.651 0.2728 −0.7681 5.698 0.5204 0.6298 5.700 0.5291 0.6795
RSD  (%) 0.2833 30.69 −61.41 0.06774 3.949 18.72 0.007108 0.4139 1.840
(�i− �i,real)/�i,real × 100 % −0.8586 −48.52 −212.0 −0.03123 −1.817 −8.194 −0.002281 −0.1679 −0.9490

Table 7
Re-calculated moments of the synthetic peaks which considered as the representation for real chromatographic peaks.

Slight tailing synthetic peaks Strong tailing synthetic peaks

�1 (min) �2 (min2) �3 (min3) �1 (min) �2 (min2) �3 (min3)

1 5.100 0.04984 0.001760 5.698 0.5257 0.6633
2  5.100 0.05000 0.001820 5.701 0.5326 0.6950
3  5.100 0.04988 0.001980 5.698 0.5241 0.6529
4 5.100  0.04985 0.001920 5.701 0.5336 0.6955
5  5.100 0.04984 0.001930 5.695 0.5159 0.6177
6  5.100 0.04972 0.001870 5.697 0.5257 0.6639
7  5.100 0.04980 0.001840 5.703 0.5367 0.7147
8  5.100 0.05015 0.002140 5.698 0.5258 0.6685
9 5.100  0.04978 0.001770 5.699 0.5199 0.6297
10  5.100 0.04990 0.001900 5.695 0.5242 0.6528
�i 5.100 0.04988 0.001893 5.698 0.5264 0.6654

−
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RSD  (%) 0.003000 0.2440 

(�i− �i,real)/�i,real × 100 % −0.002157 −0.2400 

his means that the developed method is valid since it properly
orrects the baseline level and slope.

Finally, we note that all the values calculated for the moments
f the synthetic peaks and listed in the Tables are less than the
rue, real moments of the EMG  functional peaks. This is due to the
imited integral intervals that must be adopted for the synthetic

eaks. After the noise sections were added, the integral intervals
ust be shortened to eliminate the contributions of the parts of

he integrands that are influenced most strongly by the noise, Con-
equently, parts of the profiles that should be involved are lost.
5.910 0.04299 1.204 4.507
5.500 −0.02737 −0.6755 −3.001

However, adopting the proper method of determination of the inte-
gration intervals provides low values of the Relative Difference of
the moments. Even for the third moment of the strongly tailing
peak, the relative error made is still below 10%.

5. Conclusion
The results of our work show that it might be possible to
calculate estimates of the third central moments of chromato-
graphic peaks recorded for the purpose of physical chemistry
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nvestigations of mass transfer mechanisms. When proper atten-
ion and care are paid to achieve baseline stability and a reliable
nstrument with advanced computer control is used, the values
btained may  be sufficiently accurate to permit the interpreta-
ion of the results using the equations developped by Kubin [38]
nd Kucera [39] in their works on the solution of the general
ate model [1]. We  generated peak profiles by adding up seg-
ents of realistic baseline signal recorded with noise and baseline

rift to EMG functional peaks having different degrees of tailing.
e were able to calculate the first moment and the second and

hird moments of these profiles with a precision of 0.002, 0.14,
nd 4% for the first second, and third moments respectively, and
ith systematic errors of 0.002, 0.12, and 4%, all three errors being
egative.

Based on these results, we developed a protocol for measuring
hese moments for actual peaks in true chromatograms, provided
hat they are well resolved from other components of the sample.
his method involves:

Determining the integral intervals for the moment calculation.
The curve C(t)(t − �1)2 ∼ t is an important tool to determine the
proper integral intervals for the moment calculation. The begin-
ning and ending parts of the peak, which contribute significantly
to the second and third moments and are greatly influenced by
the baseline noise due to their low (S/N) ratio, can be identified
more clearly in this curve than in the peak profile itself. The loss
of part of the integral area for moment calculation can be reduced
and the effect of the noise can be excluded
Correcting for the baseline drift. The baseline level and its slope
were corrected linearly in this work. This correction is easy to per-
form in practice and its effect in improving the moment accuracy
is remarkable, as shown in the foregoing discussion.

This method was validated by applying it to the generated
eaks. With this method, the calculated values of the third central
oments of real chromatographic peaks which have a moderate

egree of tailing and an (S/N) ratio greater than 2500 should be
ccurate within better than 10%. Even with strongly tailing peaks,

 similar result is possible.
Since we now have a valid method to determine the third

oment of elution bands with a satisfactory accuracy, we  plan
o systematically apply this method to measure the value of the
oefficient of external mass transfer of modern HPLC columns and

o study its variations with the experimental conditions, trying to
hed some needed light on the nature and properties of this poorly
nown parameter, and following the pioneering work of Gao and
in [35–37].
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